

Today's Agenda

7:30 - 7:35 AM (5 min)

Opening Remarks & Corporate Overview

Ivana Magovčević-Liebisch, PhD, JD

Chief Executive Officer, Vigil Neuroscience, Inc.

7:35 - 7:50 AM (15 min)

TREM2 Concept in Alzheimer's Disease

Marco Colonna, MD

Robert Rock Belliveau Professor of Pathology & Immunology

Washington University School of Medicine, St. Louis, MO

Vigil Neuroscience, Inc. Scientific Advisory Chairman

7:50 – 8:30 AM (40 min)

Overview of Vigil's Small Molecule TREM2 Agonist Program

David Gray, PhD

Chief Science Officer, Vigil Neuroscience, Inc.

Christian Mirescu, PhD

Vice President, Head of Neuroimmunology, Vigil Neuroscience, Inc.

8:30 – 8:45 AM (15 min)

Alzheimer's Disease Treatment & Unmet Need

Samuel E. Gandy, PhD, MD

Mount Sinai Professor of Alzheimer's Disease Research, Professor of

Neurology & Psychiatry

Associate Director of Mount Sinai Alzheimer's Disease Research Center, NYC

Past Chairman, National Medical & Scientific Advisory Council of the

Alzheimer's Association

8:45 - 8:50 AM (5 min)

Clinical Development of VG-3297, Vigil's Small Molecule TREM2

Agonist

David Gray, PhD

Chief Science Officer, Vigil Neuroscience, Inc.

8:50 – 9:00 AM (10 min)

Closing Remarks and Q&A Session

Reminders

- Webcast scheduled to end at 9:00am U.S. ET
- Presentation is available in investors section under Events &
 Presentations at www.vigilneuro.com
- Moderated Q&A session following prepared remarks
- To submit a written question, fill out form on webcast home page
- Webcast replay available later today on Vigil website under Events
 & Presentations

Forward-Looking Statements

This presentation contains "forward-looking statements," which are made pursuant to the safe harbor provisions of the federal securities laws, including the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact may be deemed to be forward-looking statements. Such statements may contain words such as "may," "might," "will," "could," "should," "would," "expect," "intend," "plan," "prepare," "look," "seek," "anticipate," "believe," "estimate," "predict," "potential," "possible," "continue," "ongoing" or the negative of these terms, or other comparable words.

These forward-looking statements include, among others, statements relating to: the Company's strategy, business plans, focus and value of future milestones; the progress and timing of the preclinical development, clinical development and regulatory development of Vigil's programs, including VGL-101 and VG-3927 and the availability of data from our clinical trials involving our product candidates and expected timing of first dosing for VG-3927; our ability to discover and build a platform of precision medicine based therapies targeting the microglia; and the patient burden of Alzheimer's disease and potential therapeutic benefit of our product candidates. These forward-looking statements, which are only predictions, involve risks and uncertainties, many of which are beyond our control and are based on our current beliefs, expectations and assumptions regarding our business. As such, you should not place undue reliance on any forward-looking statements because such risks and uncertainties could cause actual results, performance or achievement to differ materially and adversely from those anticipated or implied in the forward-looking statements. Factors that could cause actual results to differ from those predicted in our forward-looking statements include, among others, risks and uncertainties related to conducting and reporting data analyses; product development, including delays or challenges that may arise in the development and regulatory approval of our current and future product candidates or programs; uncertainties as to the availability, analyses and timing of results and data from preclinical and clinical studies and whether results from preclinical studies and early interim data will be predictive of the results of later preclinical studies and data readouts, and other clinical trials; the timing of our ability to submit and obtain regulatory clearance for investigational new drug applications and initiate additional clinical trials; our ability to work with the FDA to successfully remove the partial clinical hold on VG-3927; our ability to initiate and complete our current and expected clinical trials; whether our cash resources will be sufficient to fund our foreseeable and unforeseeable operating expenses and capital expenditure requirements; our ability to raise additional funding on favorable terms, or at all; the rate and degree of market acceptance and clinical utility of our product candidates; the accuracy of our data analyses or estimates for the potential and market for our products; our ability, and the ability of our collaborators, to protect our intellectual property and to conduct activities for the development and commercialization of our candidates in view of third party intellectual property positions; our financial performance; our ability to retain and recruit key personnel, as well as the potential contribution of our employees and board to our growth and success as a Company; developments and projections relating to our competitors or our industry; changes in general economic conditions and global instability, in particular economic conditions in the markets on which we or our suppliers operate; changes in laws and regulations; and those risks and uncertainties identified in our filings with the Securities and Exchange Commission (SEC), including under the heading "Risk Factors" in Quarterly Report on Form 10-Q for the quarter ended June 30, 2023, and such other risks and uncertainties that may be described in other filings we make with the SEC.

You should not rely upon forward-looking statements as predictions of future events or performance, or as a representation or warranty (express or implied) by us or any other person that we will achieve our objectives and plans in any specified time frame, on such specified terms, or at all. Although our management believes that the expectations reflected in our statements are reasonable, we cannot guarantee that the future results, performance or events and circumstances described in the forward-looking statements will be achieved or occur. These forward-looking statements speak only as of the date such statements are made. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

Vigil Neuroscience

Vigil Neuroscience is a clinical-stage microgliafocused therapeutics company

- Founded ~3 years ago in July 2020
- Our purpose: to treat rare and common neurodegenerative diseases by restoring the vigilance of microglia, the brain's sentinel immune cells
- Precision-based strategy for developing microglia therapeutics
- Only company known to have 2 modalities for TREM2 agonism monoclonal antibody and small molecule
- Highly experienced, execution-focused management team and Board of Directors
- >60 highly dedicated team members

Vigil's Precision Medicine Strategy to Target Broad Range of Neurodegenerative Diseases

Apply learnings from genetically defined subpopulations to larger indications

Vigil TREM2 Agonists: Differentiated Strategy & Multiple Modalities

VG-3927: Small Molecule TREM2 Agonist Well-Positioned for AD

- First & only small molecule TREM2 agonist entering clinical development
- **Excellent profile** as potential treatment for Alzheimer's Disease (AD):
 - Oral dosing
 - Superior brain penetration & differentiated pharmacokinetics & MoA vs antibody-based therapeutics
 - > Novel MoA potentiates TREM2 response to natural damage ligands may enable
 - Improved potency & specificity in active disease state
 - Potentially more favorable safety profile
 - Absence of Fc effector domain may limit observations of ARIA
- Investigational New Drug (IND) is now open
 - Phase 1 clinical trial in healthy volunteers allowed to proceed with partial clinical hold related to maximum exposure limit
- Dosing in Phase 1 clinical trial in healthy volunteers to commence in Oct 2023

Featured Key Opinion Leaders (KOLs)

Marco Colonna, MD
Robert Rock Belliveau Professor of Pathology & Immunology
Washington University School of Medicine, St. Louis, MO
Vigil Neuroscience, Inc. Scientific Advisory Board Chairman

Samuel E. Gandy, MD, PhD

Mount Sinai Professor of Alzheimer's Disease Research,

Professor of Neurology & Psychiatry

Associate Director of Mount Sinai Alzheimer's Disease Research Center, NYC

Past Chairman, National Medical & Scientific Advisory Council of the Alzheimer's

Association

TREM2 Concept in Alzheimer's Disease (AD)

Marco Colonna, MD
Robert Rock Belliveau Professor of Pathology & Immunology
Washington University School of Medicine, St. Louis, MO
Vigil Neuroscience, Inc. Scientific Advisory Board Chairman

Unique Developmental Origin of the Brain Resident Immune System

Microglial-specific Markers:

CD11b

CD45^{low}

Cx3cr1^{high}

Tmem119

FCRLS

P2RY12

Sall₁

https://www.mdpi.com/1422-0067/22/18/9706

Microglia in Healthy & Disease States

Microglia are Key to Maintaining Normal Brain Homeostasis and Neuronal Function

Microglia are Brain-resident First Responders to Acute Brain Injury

Nimmerjahn, A et al. (2005) Science

Microglia Migration into AD's Neuropathological Amyloid Plaque Microenvironment

Healthy Control Brain

Alzheimer's Disease Brain

Colonna Lab, unpublished data

Amyloid plaque

Aggregated ApoE

Genetics of AD Inspire the Next Generation of Microglia-Targeted Therapeutics

Expansion of AD Sequenced Genomes Identifies Rare And Novel Causal Genetic Risk Factors

AD Genetics-identified Genes Enriched in Microglia

Cuyvers, E and Sleegers, K (2016) Lancet Neurology; Hansen, DV et al. (2018) J Biol Chem

Targeting Neuroimmunology Specifically for Alzheimer's Disease

Distinct Genetic Links vs Inflammation Disease States

Human Genetic Underpinnings of Alzheimer's Disease Point Directly to TREM2 with Further Validation by Multiple Pathway Interactors

Biological Substrates of Multiple Sclerosis Points to a Distinct Signature

Adapted from Kunkle, BW et al (2019) Nature Genetics; International Multiple Sclerosis Genetics Consortium (2013) Nature Genetics

Why All the Focus on TREM2?

Overwhelming Human Data Point to AD-risk Associated Gene, Protein & Cellular Dysfunction

Association of TREM2 Variants with AD Risk is Robust and Highly Replicated

TREM2 Mutations in AD Suggest Loss of Ligand Binding and Loss of Microglia Function

Gene Expression in Sporadic AD Further Validates Involvement of the TREM2 Pathway

Condello, C et al. (2018) Biol Psychiatry; Kober, D et al. (2016) eLife; Zhang, B et al. (2013) Cell

Microglial Loss-of-Signaling Hypothesis for TREM2

TREM2-DAP12 Pathway & Its Importance Beyond AD

TREM2-DAP12 Signaling Transduction and Cellular Function in Microglia

TREM2 and DAP12 Mutations Cause Rare Early-onset Familial Microgliopathy Called Nasu-Hakola Disease (NHD)

MRI manifestations of NHD

Neuropathology in NHD patient

Satoh et al. (2010) Neuropathology; Kilic et al. (2012) Clinical Imaging

TREM2's Role in Microglial Activation Disease State

Molecular Evidence

TREM2 promotes non-inflammatory, neuroprotective microglia state

AD Mouse Models

TREM2 is required for neuroprotection within the amyloid plaque niche

Human AD Validation

Plaque-associated microglia protect neighboring neurons

Keren-Shaul, H et al. (2017) Cell; Wang, Y et al. (2015) Cell; Yuan, P et al. (2016) Neuron

Preclinical Proof-of-Principle via TREM2 Agonist Antibodies

Target Validation via Pharmacological Modulation

TREM2 Agonist Antibody Reduces Neuronal Damage Locally Around A\beta Plaques

Neuronal damage

Enhanced Brain Penetration Leads to Increased Amyloid Reduction

TREM2/TfR bsAb: TREM2 tetravalent antibody engineered for enhanced brain penetration **TfR:** transferrin receptor epitope

Wang, S et al. (2020) J Exp Med

Amyloid plaque

Leveraging Microglia to Restore Tissue Homeostasis in AD

Evidence from Recent Anti-Aβ Therapeutics

Chauraslya, A et al. (2023) Nanomedicine-Based Approaches for the Treatment of Dementia

Breakthroughs in Neuroimmunology Seed a Promising New Outlook for AD Therapeutics

Summary of Key Concepts

- Genetics of AD point to microglia as the next generation therapeutics
- TREM2 is both directly implicated as a causal gene as well as indirectly as a genetic hub
- Extensive research points to their protective role in the amyloid plaque microenvironment
- Preclinical genetic <u>and</u> pharmacological studies validate the TREM2 agonism for AD concept
- Recently approved anti-Aβ therapeutics provide clinical precedent that leveraging microglia can restore tissue homeostasis in AD

Acknowledgements

Washington Univ.

Marina Cella Susan Gilfillan

Jonathan Kipnis Igor Smirnov

David M. Holtzman Jason Ulrich

Weizmann Institute

Ido Amit Hadas Keren-Shaul

Brain research Institute Niigata, Japan

Akiyoshi Kakita Mari Tada Masaki Takao

Mayo Clinic Rochester

Aivi Nguyen Rachel Larsen Eleni Costantopoulos **University of Brescia**

Luigi Poliani William Vermi Mattia Bugatti Andrea S Omodei

CST, Boston

Tyler Levy Sean Beausoleil Richard Cho

Vigil Neuroscience

David Gray Christian Mirescu Borislav Dejanovic Kelley Larson

Amgen

Daniel C. Ellwanger Samuel A. Hasson Menno van Lookeren Campagne Alector

Tina Schwabe Meer Moustafa Ilaria Tassi Herve` Rhinn Adiljan Ibrahim Arnon Rosenthal

VG-3927: First & Only Small Molecule TREM2 Agonist Entering Clinical Development for Alzheimer's Disease

David Gray, PhD

Chief Science Officer, Vigil Neuroscience, Inc.

vigilant for you®

VG-3927: First & Only Clinical Oral Small Molecule TREM2 Agonist

We Are Microglia Experts

Outstanding & differentiated clinical candidate from world-class R&D

Potent TREM2 agonism synergizes with natural damage ligands

Broad and favorable modulation of neuropathology

VG-3927 Selected from High Quality Chemical Matter

Deep Understanding of MoA with Multiple Excellent Back-up Compounds

Strong Development Path

- Consistent PK across preclinical species
- CNS drug properties fully optimized
- Scalable and versatile synthetic route

pEC50 = log [pSYK EC50] measured in HEK293T—hTREM2 cells , LogD(7.4) = Measured water/octanol partition coefficient at pH 7.4, Rat%F = percentage oral bioavailability in Wistar-Han Rats , Rat Cl = Estimated metabolic clearance rate measured in Wistar Han rats, Rat Kp = Brain to plasma partition coefficient measures in Wistar Han rats

VG-3927: Entering Phase 1 with Excellent Product Profile

■ TREM2 EC₅₀: $< 0.003 \mu M$

TREM1 selectivity: > 50,000-fold

Clean profile (evaluated in ~350 off-target assays)

• SIF solubility: 83 μM

MDCK Papp: >10 cm⁻⁶/s

■ MDCK PGP ER: ~0.5

Establishing VG-3927 for Development in AD

Pharmacological & Clinical Translation

VG-3927 Pharmacological Profile

TREM2 engineered systems

High-throughput profiling

Human iPSC microglia monocultures

Therapeutically relevant target cells

VG-3927 Functional & Model System Profile

Human CNS tri-culture platform

Biologically diverse human CNS model system

Mouse neurodegenerative disease models

Established preclinical AD transgenic mice

Nonhuman primate profiling

ID and validation of translational biomarkers

VG-3927: Potent & Selective TREM2 Agonist

VG-3927 – Highly Selective Agonist for TREM2 Over TREM1

VG-3927 Signaling in Human Microglia is Fully Dependent on TREM2

VG-3927: Potent TREM2 Agonist in Neurodegenerative Disease-Associated TREM2 Variants

Supports Precision-based Clinical Development

Vigil Precision AD Strategy

Accelerated Path to Successful Clinical POC

VG-3927 Potency Across Notable AD-risk Variants of TREM2

VG-3927 Potentiates Signaling of Damage-associated Ligands

Damage-associated Ligand: Sulfatide

Focusing Efficacy in Pathological Microenvironments

TREM2 AD-risk Variants Are Loss of Function & Impact Signaling

Example: R47H Leads to Defective Sensing of Sulfatide

TREM2^{R47H}
Variant

Mutation Impact:

- Missense in ligand binding domain
- Loss of TREM2 response to sulfatide (damage-associated ligand)

VG-3927 Restores TREM2 Response to Damage-associated Ligand in R47H

Rescues Signaling Impairment in AD-risk Variant

VG-3927 TREM2 SM for AD

- TREM2-R47H defective response to damage-associated ligand (sulfatide)
- VG-3927 rescues signaling and response to sulfatide
- Similar effects observed in TREM2 R62H AD-risk variant

VG-3927 Fully Restores Compromised Signaling in AD-risk Variant

VG-3927 Fully Restores TREM2 R47H Defect

TREM2 Sulfatide Response (% CV:CV control)

VG-3927 Acts as a Molecular Glue to Stabilize TREM2 Complex

Novel Mechanism of Action

TREM2 immunoprecipitation in HEK system

VG-3927 Orchestrates Multi-Protein Interaction to Trigger Signaling

Unique Molecular Glue Mechanism of Action

- TREM2 clusters and utilizes DAP12 to initiate downstream signaling
- VG-3927 coordinates these protein-protein interactions

Establishing VG-3927 for Development in AD

Pharmacological & Clinical Translation

VG-3927 Pharmacological Profile

TREM2 engineered systems

High-throughput profiling

Human iPSC microglia monocultures

Therapeutically relevant target cells

VG-3927 Functional & Model System Profile

Human CNS tri-culture platform

Biologically diverse human CNS model system

Mouse neurodegenerative disease models

Established preclinical AD transgenic mice

Nonhuman primate profiling

ID and validation of translational biomarkers

VG-3927: First & Only Small Molecule TREM2 Agonist Entering Clinical Development for Alzheimer's Disease

Christian Mirescu, PhD

Vice President, Head of Neuroimmunology, Vigil Neuroscience, Inc.

vigilant for you®

Establishing VG-3927 for Development in AD

Pharmacological & Clinical Translation

VG-3927 Pharmacological Profile

TREM2 engineered systems

High-throughput profiling

Human iPSC microglia monocultures

Therapeutically relevant target cells

VG-3927 Functional & Model System Profile

Human CNS tri-culture platform

Biologically diverse human CNS model system

Mouse neurodegenerative disease models

Established preclinical AD transgenic mice

Nonhuman primate profiling

ID and validation of translational biomarkers

Vigil Human CNS Platform Combines Neurons, Astrocytes & Microglia

Human iMGL Monoculture Platform

Pharmacology in disease-relevant human cells

- Microglial pharmacology
- Target selectivity
- Fine mapping agonism

Human CNS Tri-culture Platform

Bridge to a predictive human translational system

- Vigil's fully human translational cell model
- Understand interactions between diverse CNS cells
- Complementary with mono-culture applications

VG-3927 Functional Profiling in CNS Tri-Culture Platform

VG-3927

Mobilizing microglia response with a favorable, non-inflammatory profile

- Boosting of neuroprotective markers
- Plus countering inflammationinduced neurodegeneration

VG-3927: Enhances Signals of Microglia Mobilization

Favorable, Non-inflammatory Profile

Enhancement of Microglia Migration Signal

Suppression of Pro-inflammatory Cytokines

^{*} denotes p<0.05

^{*} denotes p=0.01; ** denotes p=0.001

VG-3927 Reduces Established Neurodegeneration Biomarkers

Reduction of Extracellular NfL & Tau

VG-3927's Impact on Key Neurodegeneration Biomarkers in Humans

NfL: neurofilament

VG-3927 Reduces Extracellular NfL Accumulation in Human Tri-cultures

VG-3927 Reduces Extracellular Tau Accumulation in Human Tri-cultures

ANOVA_{Treatment}, p<0.0001

VG-3927 Protects Against Inflammation-Induced Astrogliosis

TREM2 Agonism Activates Antiinflammatory Benefit

GFAP: Marker of Astrogliosis

VG-3927 Reduces Astrogliosis Biomarker (GFAP) in Human CNS Tri-cultures

Days Post-neurodegeneration
Stimulus

LPS: lipopolysaccharide; IFNY: interferon-gamma; GFAP: glial fibrillary acidic protein

VG-3927 Protects Against Biomarkers of Inflammation-Induced Neurodegeneration

TREM2 Agonism Activates Antiinflammatory Benefit

VG-3927 Suppresses Extracellular NfL & Tau Accumulation in LPS Model

Establishing VG-3927 for Development in AD

Pharmacological & Clinical Translation

VG-3927 Pharmacological Profile

TREM2 engineered systems

High-throughput profiling

Human iPSC microglia monocultures

Therapeutically relevant target cells

VG-3927 Functional and Model System Profile

Human CNS tri-culture platform

Biologically diverse human CNS model system

Mouse neurodegenerative disease models

Established preclinical AD transgenic mice

Nonhuman primate profiling

ID and validation of translational CSF biomarkers

VG-3927: Functionally Active in AD State

VG-3927 & VGL101 mAb Activate Neuroprotective Genes Similarly

Mouse Amyloidosis Model VG-3927 Oral Dosing

Amyloid-beta (Aβ)
Microglia (Iba1)

Model: 5xFAD AD (mut APP/PS1) + hTREM2

VG-3927 Recapitulates TREM2 Antibody Gene Signatures

VG-3927 Activates Protective Microglia Gene Signatures

Exploring VG-3927 Therapeutic Effects in AB Plaque-bearing Mice

Initial Pilot Study

VG-3927 Effects in Humanized TREM2 AD Mouse Model

Intervention: Post-plaque deposition

Initial age: 4.5 month-old 5xFAD-hTREM2 mice

Daily Dosing for 6 Weeks

VG-3927 10mpk QD

Disease-modifying Effects of VG-3927 on Aβ Pathology & AD-related Hallmarks

VG-3927 Reduces Aβ Pathology in Plaque-bearing Mice

Preliminary Effects Following 6 Weeks of Oral Dosing

VG-3927

- Trend toward reducing plaque area and insoluble Aβ
- Additional potential to reduce plaque-associated ApoE

VG-3927 Effects on
Aβ Plaque Area
Immunohistology from Brain Slices

VG-3927 Effects on Insoluble $A\beta_{1-42}$ Biochemistry of Brain Homogenates

VG-3927 Reduces Neuropathology-associated Aggregated ApoE

Preliminary Effects Following 6 Weeks of Oral Dosing

No Change in Soluble ApoE Functional Form

Reduced <u>Aggregated</u> ApoE Pathological Form

Working Model of VG-3927 Modulation of AD-related Pathology

Confirmation of Oral Bioavailability, Brain Penetrance & CNS Target Engagement

Favorable PK & PD Demonstrated in Non-Human Primates (NHPs)

Translation Biomarker Path to Clinic

CSF Biomarker of TREM2 Target Engagement

VG-3927 CNS Exposures
PK Following Single Oral Dose

Reduction of sTREM2 in NHP CSF Relative Change from Pre-dose Levels

Establishing VG-3927 for Development in AD

Pharmacological & Clinical Translation

VG-3927 Pharmacological Profile

TREM2 engineered systems

High-throughput profiling

Human iPSC microglia monocultures

Therapeutically relevant target cells

VG-3927 Functional and Model System Profile

Human CNS tri-culture platform

Biologically diverse human CNS model system

Mouse neurodegenerative disease models

Established preclinical AD transgenic mice

Nonhuman primate profiling

ID and validation of translational CSF biomarkers

VG-3927: First & Only Clinical Small Molecule TREM2 Agonist for AD

Broad modulation of neuropathology by harnessing microglia

VG-3927, TREM2 SM for AD

- Phase 1 dosing in healthy volunteers to commence in Oct 2023
- Differentiated TREM2 agonist
 - Highly potent and selective
 - Orally bioavailable and brain penetrant
- TREM2 natural ligand boosting
- Broad modulation of neuropathology

Alzheimer's Disease Treatment & Unmet Need

Samuel E. Gandy, PhD, MD

Mount Sinai Professor of Alzheimer's Disease Research,

Professor of Neurology & Psychiatry

Associate Director of Mount Sinai Alzheimer's Disease Research Center, NYC

Past Chairman, National Medical & Scientific Advisory Council of the Alzheimer's

Association

Alzheimer's Disease (AD)

- Progressive degenerative disease
- Most common cause of dementia in elderly
- Progressive memory loss, impaired thinking, disorientation, language problems, mood disturbances
- Complete dependence in advanced stages

Multiple Pathophysiological Mechanisms Underly Alzheimer's Disease

β-amyloid Plaques Tau Tangles Inflammation Neurodegeneration

Plowey E et al, Acta Neuropathol (2022); https://www.nlm.nih.gov/medlineplus/magazine/issues/fall10/articles/fall10pg20-21.html https://step1.medbullets.com/neurology/113089/alzheimer-disease; https://www.ahajournals.org/doi/10.1161/STROKEAHA.119.027315

AD Presents a Significant Unmet Medical Need

- An estimated 6.7 million Americans are living with Alzheimer's disease¹
 - 1 in 9 people, age 65 and older has AD
 - Accounts for 60-80% of all dementia cases
 - Increasing incidence due to an aging population
 - 7th leading cause of death
- Enormous societal and economic burden
 - Long duration of illness and time spent in a state of severe disability & dependence
 - >11 million Americans provide unpaid care for a family member or friend with AD & other dementia
- Delaying the onset and progression of AD by 1 year may result in 9.2 million fewer cases in global burden by the year 2050²

^{1.} Alzheimer's Disease Facts & Figures 2023 Alzheimer's Association; 2. Brookmeyer R, et al. Alzheimer's Dement. 2007;3(3):186-19

Current Treatment Options for AD

Symptomatic Treatment

- Cholinesterase inhibitors and NMDA antagonists to improve symptoms
- Does not impact brain pathology or modify the disease course
- Offers modest clinical benefit but effects wane over time due to disease progression

Anti-Aß Monoclonal Antibodies

- Aβ lowering immunotherapies
- 22-30% slowing in clinical decline
- Administered by intravenous infusion once or twice a month
- Can cause ARIA (brain edema, microbleeds), a common side effect that requires MRI monitoring

Unmet need remains for therapeutics with improved safety and efficacy that address broader AD disease pathophysiology

Anti-AB mAbs with Efficacy Are Associated with ARIA

- Transient radiographic finding, occurs early in the treatment course
- Monitorable by MRI surveillance
- Managed by dose titration and dose suspension

Anti-Aβ mAbs	Efficacy on CDR-SB	Aβ plaque removal	ARIA	
Effective at Lowering Aβ Plaques ¹⁻³	~22-30% slowing	✓	✓	
Do Not Lower Aβ Plaques ⁴⁻⁵	X	X	X	

Small Molecule Modality Offers the Potential to Mitigate ARIA Liability

Unmet Needs & Key Opportunities in AD Therapeutics

Human Genetics Motivates Targeting Microglia for Next-gen AD Therapeutics

>30% of AD-risk Genes Are Expressed by Microglia

Lane et al European Journal of Neurology (2017)

Human Genetics & Disease Models Suggest Optimizing Microglia Function May Be Beneficial

- AD-related TREM2 variants exhibit impaired ligand binding & partial loss-ofmicroglia function
- Genetic mutations associated with reduced microglia function also implicated in other genetic forms of neurodegeneration

Gene	Condition Associated with Gene Mutation		
TREM2	NHD/PLOSL Increase risk for AD		
TYROBP/DAP12	NHD/PLOSL		
CSF1R	ALSP		

TREM2 Agonism Enhanced Barrier Function and Phagocytosis Resulting in Reduced Neuronal Loss in *in vitro* and Animal Models of AD

В

	ACTIVITY	TREM2 KO/ LOF
βŞ	pSYK	•
PATHWAY BIOLOGY	mTOR signaling	•
	DAM transcriptional profile	▼ -
	microglia survival/ proliferation	•
	lipid accumulation	•
DISEASE BIOLOGY	Nf-L	•
	TSPO-PET	♦
	FDG-PET	•
	amyloid plaque pathology: plaque load clustering around plaques barrier function amyloid plaque seeding diffuse plaque morphology neuritic pathology	variable Variable
	tau	variable

TREM2-R47H Variant Carriers Exhibit Faster Decline & Worse Cognition Compared to Non-Carriers

Individuals with AD

Cognitively Normal Elderly

Jonsson T et al. NEJM (2013); Del-Aguila JL et al. J Alzheimer's Dis. (2018)

VG-3927: Well-Positioned for Clinical Development in AD

- Orally bioavailable brain penetrant small molecule
- Potent and highly TREM2-specific
- Potentiates TREM2 response to natural damage ligands across different AD-associated genetic TREM2 variants
- Optimal balance of promoting neuroprotective function and suppressing proinflammatory activity of microglia
- Preliminary data showing impact on AD pathophysiology in an animal model of AD
- Clear target engagement in non-human primates

VG-3927 Has Potential to Address Unmet Needs & Opportunities in AD

Drive greater efficacy

- Boosting microglial repair functions
- Impact broader disease pathophysiology

Greater Efficacy Improved Safety

Mitigate ARIA

- No Fc-mediated interactions
- Specificity of response to disease microenvironment
- Favorable kinetic profile vs mAbs

• Convenient oral option vs i.v. infusion of immunotherapies

Access Combination Therapy

 Small molecule optimal for combination therapy and AD prevention paradigms

VG-3927 Phase 1 Trial in Healthy Volunteers

Healthy volunteers (HVs) including an elderly cohort

Trial Design

- Double-blind, placebo-controlled
- Single (SAD) & multiple (MAD) ascending dose cohorts

Treatment Duration

- VG-3927 or placebo (oral dosing)
- SAD single dose
- MAD once daily for 14 days

Treatment Duration

- Safety and tolerability
- Pharmacokinetics (PK)
- Pharmacodynamics (PD) based on CSF biomarkers (sTREM2, sCSF1R, osteopontin)

VG-3927: Early-stage Clinical Strategy to De-risk Development for AD

Phase 1 Healthy Volunteers

- Safety, tolerability, PK & PD
- SAD/MAD in healthy volunteers includes an elderly cohort in MAD
- Target engagement: based on CSF levels of sTREM2; downstream PD: based on sCSF1R and osteopontin in CSF
- Dosing to commence in Oct 2023
- Interim data on SAD/MAD cohorts in mid-2024

Phase 1b AD Patients

- Safety and proof-of-pharmacology in symptomatic AD patients
- Characterize pharmacology in genetic subpopulations including disease associated TREM2 variant carriers to inform patient population for future clinical development

Phase 2/PoC AD Patients

Phase 1b to inform on target AD population and study design to assess safety and proof-of-concept in symptomatic AD patients

Closing Remarks

Ivana Magovčević-Liebisch, PhD, JD Chief Executive Officer Vigil Neuroscience, Inc.

VG-3927: Differentiated Oral TREM2 Agonist with De-risked Precision-based Clinical Strategy for AD

- First & only small molecule TREM2 agonist entering clinical development
- Harnesses neuroprotective activity of microglia via highly-potent & specific TREM2 agonism
- Differentiated profile to potentially address AD therapeutic needs:
 - Unique MoA (potentiation of TREM2 response to natural damage ligands) for improved efficacy & safety
 - Activates microglia with broad non-inflammatory profile
 - Absence of Fc-effector domain & favorable PK for ARIA mitigation/management
 - Amenable to future combination treatment regimens
 - Convenient & patient-friendly oral dosing
- Genetically guided precision-based clinical strategy to de-risk drug development

VG-3927 Small Molecule TREM2 Agonist Milestones

Submit IND for VG-3927, oral small molecule TREM2 agonist	Q3 2023
Begin Phase 1 dosing of VG-3927 in healthy volunteers	Oct 2023
Report interim Phase 1 SAD/MAD data of VG-3927 in healthy volunteers	Mid-2024

Vigil is Well-positioned to Execute on Our Mission

